Multi-fidelity modeling and propagation of
uncertainty in multiscale biological systems
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At the 2010 MSM Consortium meeting, a white paper titled “Cell
scale to macro-scale integration” was presented by the Cell-to-
Macroscale WG to discuss the advantages, limitations and prospects
of different numerical methods and modeling strategies to predict
Integrative physics and physiology that take place at cellular-scale to
macro-scale in the human body.

Fluid—structure interaction

Image-registration driven simulation

Three-dimensional to one-dimensional model coupling and interface conditions
Combined continuum-mesoscale-atomistic-level simulation

Interface and boundary conditions: accuracy and dynamical importance
Multiscale geometry representation and boundary conditions

Integration of imaging data with modeling and computer simulation

Direct versus indirect interactions between processes that operate at disparate scales
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Uncertainty in materials properties, boundary conditions, and geometry
10. Sensitivity and uncertainty in multiscale and multi-physics integration
11. Cell models



Special Issue of Journal Of Computational Physics
Vol. 244, 2013
Multi-scale Modeling and Simulation of Biological Systems

Ching-Long Lin, Grace C.Y. Peng and George Karniadakis

d Cardiovascular systems (8 papers)
d Respiratory systems (3 papers)
 Cells/proteins (5 papers)

J Biochemical processes (2 papers)
d Bone mechanics (2 papers)

 Predicting surgery outcomes (1 paper)


http://www.sciencedirect.com/science/journal/00219991/244/supp/C

"...Because I had worked in the closest possible ways with
physicists and engineers, I knew that our data can never be precise...”
Norbert Wiener




Solving Differential Equations from Measurements Only!

“...once we allow that we don’t know f(x), but do know some
things, It becomes natural to take a Bayesian approach™

Persi Diaconis, Stanford (1988)

v Remove the tyranny of Grids! And of serious Math!
v"Use noisy measurements - Predict with uncertainty!

v Execute Poincare’s will!



Outline

|. Gaussian Process Regression
Il. Noisy Data & Multi-fidelity

Ill. PDESs via Machine Learning



Gaussian processes
Starting point: The multivariate Gaussian distribution

P(fis for o s fos forts fosan-- o IN) ~N (K)o = [*”'-f"i} and K = [
S — — e — — L

fa fr

Generalization: The Gaussian process

He
[T— [} and K. = [Kﬂ' } Ki__j — kf:xh?{j}

mean function covariance function

Priors over functions: f~GP(p(x), K(x.x";:0)) Samples from a GP prior

Infinite dimensional model, but finitely many observations: The marginalization property

p(fa.fp) ~ N(p.K).  Then:

p(fs) = [ p(fa.fp)dfp = N (e, Ka4) infinite
i limits

Deep

networks
Dual

functions
Posterior is also Gaussian:

p(fa,.fg) ~N (. K). Then:
p(falfB) = N(pa + KapKph(fe — pp). Kaa — KapKpKpa)

Gaussian Kernel

processes /< *\ machines
Bayesian

inference

Rasmussen, C. E. Gaussian processes for machine learning (2006)



Nonlinear regression with Gaussian processes

(y=FX¥) +e, [~ GP(u(a), K(x,X;0))
History: W
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Wiener-Kolmogorov filtering (1940)

.. : . constant a>
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Rasmussen, C. E. Gaussian processes for machine learning (2006)



increasing fidelity

Multi-fidelity modeling
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Multi-fidelity modeling with GPs

Predicting the Output from a Complex Computer Code When Fast
ff (I) = i1 [:}{]I ft— 1 (}{) — .{if (:5{:] Approximations Are Available

t=1.....5 M. C. Kennedy; A. O"Hagan
20 Brometrika, Vol 87, No. 1o (Mar., 20000, pp. 1-13.
Co-Kriging ——- ©  Exact——
Eﬂ - - o ,
Predictive posterior
(fely. X, 2) = N(filpe, 02 Ny
pf* y'.* '.I:*}_-“ f* H*'.Hzt}?
e (x,) = ,I;;*N@ o2 ly, Ny
E * * E _1 * - -
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) Theorem (LeGratiet, 2014):
Key idea: Replace fi—1 with the GP posterior of the previous level f;_; The predictive posterior of

the recursive scheme has exactly the

/—\ N same distribution with the the fully
fi(x) = pi_1(x ‘|‘ 04 (x) fi—1 ~ fi—1|P1,Da, ..., Dy_1 coupled model given a nested

experimental design.

M.C Kennedy, and A. 0'Hagan. Predicting the output from a complex computer code when fast approximations are available, 2000.

L. Le Gratiet, and J. Gamnier, "Recursive co-kriging model for design of computer experiments with multiple levels of fidelity.” International Journal for Uncertainty Quantification, 2014



A general framework

Multi-fidelity in models Multi-fidelity in probability space
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Nonlinear multi-fidelity modeling via probabilistic deep learning

We generalize the classical linear scheme of Kennedy and O’'Hagan

~
. fa(z) = pfi(x) + d2(x)

fi ~ GP(f1]0, K1(z,z'; 61))

09 ~ GP (s, Kao(x, 2';03))

\_ _J

.

to a compositional and robust model inspired by deep learning that can learn complex
nonlinear and space-dependent cross-correlations

[:NARGP] f2(w) == 92(:135. fl (:I)))
f1~GP(f1|0, Ki(x,z';61))
| g2 ~ GP(g2]0,. K2((z, f1(x)), (2", fi(z)); b2))
i(z((w, fi(x)), (=, fi(x")); 02)8:@%(33, x’; Gt,,)x@tf (filx); filx"); ‘9th+@%5 (z, 20,

Space-dependent nonlinear map from the low- to the high-fidelity model

N —

*example for 2 levels of fidelity — extension to more levels and deeper networks is straightforward.

M.C Kennedy, and A. 0'Hagan. Predicting the output from a complex computer code when fast approximations are available, 2000.
P. Perdikaris, M. Raissi, A. Damianou, N.D Lawrence, G. E Karniadakis, Nonlinear information fusion algorithms for robust multi-fidelity modeling, 2016.



A deceptively simple example
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P. Perdikaris, M. Raissi, A. Damianou, N.D Lawrence, G. E Karniadakis, Nonlinear information fusion algorithms for robust multi-fidefity modeling, 2016.



JAVE)

Nonlinear multi-fidelity modeling via probabilistic deep learning

B G manifold
-Exact correlation

ir » Exact low-fidelity fi{z) and
¢ q - mnested training data (14 points)
4 \ Exact high-fidelity fi,(x) and
050 % nested training data (14 points)

Projection of fi{x) on G
Nested high-fidelity

® training data (14 points)

- =Exact low-fidelity
% High-fidelity training data (14 points)
o Low-fidelity training data (20 pomm

0 0.2 04 0.6 0.8 1

U — ot Biggha-fidelity

fu(x)

: Figure 4: A pedagogical example: The NARGP algorithm can capture complex non-linear, non-

TN Y\ functional, and space dependent cross-correlations by inferring the nonlinear latent manifold
-2 Bt Pt o el G that governs the functional relation between the inputs z and the outputs of the low- and
14 thh-ﬁdellty models fj(z) and f;(x), respectively. (a) The low-fidelity model is projected onto
-1 «0.5 0 0.5
Jifz) 'the nonlinear latent manifold G that is inferred using the deep non-parametric representation
of Eq. 2.11. (b) The high-fidelity function f;(x) is recovered by a smooth mapping from the G
manifold to the high-fidelity data.

P. Perdikaris, M. Raissi, A. Damianou, N.D Lawrence, G. E Kariadakis, Nonlinear information fusion algorithms for robust multi-fidelity modeling, 2016.



Multi-fidelity Bayesian optimization

Goal: |dentify a set of parameters that generates a response matching a target performance y*

X* = min ||f(x) — y*|| (potentially intractable)
xR

Idea: \We model the response of a system using deep multi-fidelity surrogates

y = fi(fic1(--(f1(x)))), fi ~ GP(pi(x), L)

Setup: Black-box and expensive to evaluate objective function, noisy observations, no gradients

= 3 '[‘=.4

Then the surrogate posterior distribution e
along with an acquisition function

suggest a sampling plan than °—/'°/—

balances exploration vs exploitation
towards identifying a global optimum

Postarior
Postarior

The optimization problem is transformed to:

X — are max o x: D, . M Next
n+1 ngE‘.d '[:; e n] o Naxt A

Acquisition function

Acquisition function

Remark:
Acquisition functions aim to balance the

trade-off between exploration and exploitation.

Example: 1D function maximization

P Perdikaris, and G.E Karniadakis. "Model inversion via multi-fidelity Bayesian optimization.” J. R. Soc. Interface (2016)
B. Shahriari, Swersky, K., Wang, Z,, Adams, R. P, & de Freitas, N., “Taking the human out of the loop: A review of bayesian optimization.” Proceedings of the IEEE, 104(1), 148-175, (2016)



Calibration of blood flow simulations

(1)
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Multi-fidelity approach: Civz,

1.) 3D Navier-5tokes (spectral/hp elements, rigid artery) —> high fidelity O(hrs)
2.) Non-linear 1D-FSI (DG, comphant artery) —= intermediate fidelity O(mins)

E.} Lineanized 1D-FSI solver around an inaccurate reference state —= low fidelity O(s)
/

P Perdikaris, and G.E Karmiadakis. "Model inversion via multi-fidelity Bayesian optimization.” 1. R. Soc. Interface (2016)



Calibration of blood flow simulations

- Exact response (250 high-fidelity runs)

(1); — Ps (X) )2
(p%)?

V8 [

P Perdikaris, and G.E Karniadakis. "Model inversion via multi-fidelity Bayesian optimization.” J. R. Soc. Interface (2016)



Calibration of blood flow simu__lations

1011

B Multi-fidelity 11

» Low-fidelity data (60 points)
04 . Intermediate-fidelity data (20 points)
* High-fidelity data (3 points)

0.3 A

(pt — ps(x))0-2 ~
(p:)?

0.1 4

x101?

Decreased the relative errorto @(10%)
after 3 iterations of BO, mainly sampling

the lowest fidelity (cheapest) solver.

P Perdikaris. and G.E Kamiadakis. "Model inversion via multi-fidelitv Bavesian ootimization." J. R. Soc. Interface (2016)




Solving differential equations from measurements only

ﬁ £
 Srua(a) + [ ual€)de = f(@
10 5o
> = u(r) = f(z)
Loua(@) = fola) ﬁ 293 i
i'_ig{f= I} + Eui{t? I} o WHEH! I:] o HE[:T'! I:] — f(t? T}

—cDiusg(z) —us(z) = fz)

Linearity
us(z) ~ GP(0, g(z. 2" 8)) ——  falz) ~GP(0. k(z,2";0)) ——— k(z,2:0) = L:Log(x z';0)

Problem setup:

- fa(x) is an unknown, black box function
only scattered, noisy, variable fidelity observations of fa(x) are available
we have no data on us(x) other than the necessary initial/boundary conditions

no numerical discretization!

“once we accept that we don’t know f, but we do know something, it becomes natural to take a Bayesian approach™  F Diaconis, “Bayesian numerical analysis; 1958

“stochastic methods will transform pure and gpplied mathematics in the beginning of the third millennium, as probability and statistics will come to be
viewed as the natural tools to use in mathematical as well as scientificmodeling” [ Mumford, “The dawning age of stochasticity ; 2000

Revisiting numerical methods from a statistical inference viewpoint traces all the way back to the Poincar’s courses on probability theory!

M. Raissi,., P Perdikaris, and G.E. Karniadakis, Inferring solutions of differential equations using noisy multi-fidelity data, http-//128.84.21.199/abs/1607.04805, 2016




Numerical solution of PDEs via machine learning

Priors

Noisy
data
on

f(x)

Posterior
on

_____________________________________ -
4 3
u(z) ~ GP(0, g(x,2";0)) |
k(x,2';0) = Lo Lo g(x,2';0) I
J
_____________________________________ -
|
B Single-fidelity a = Multi-fidelity D |
regression 1D example: regression |
10 ou v 10 |
-+ u(§)d¢ = f(x
oot [ u©d = s !
5! |
|
. — Exact hight-fidelity forcing O
;f—i/ 0 - Exact low-fidelity forcing . |
e High-fidelity training data (3 points) |
| o Low-fidelity training data (15 points) |
rer |
- |
~10 10
0 0.5 1 0 0.5 1
x &z |
____________________________________ |
2 2 E !
|
1 |
— Exact solution |
- -GP posterior mean = |
B Two standard deviations band = 0 |
= Anchor point(s) |
-1 |
|
-2 -2 : I
0 0.5 1 0 0.5 1
x L |

M. Raissi,., P. Perdikaris, and G.E. Karniadakis, Inferring solutions of differential equations using noisy multi-fidelity data, http:/


http://128.84.21.199/abs/1607.04805

M. Raissi,.,

Adaptive refinement via active learning

u(x) std x1 ) error

-731

S 107}
0% u :
(D)
_ -
9.2 f(z1, z2) 2
2 —
= 10
error
0.3
015 0.2 10-8_
0.1 & 0.5
0.1
0.05
- 10710
0.5 1
&1 I

02 10%¢
015
0.1
005 107/

[teration: 0, Number of training points: 4

m— Solution
= = = Forcing

0 20 40 60 80

* denotes the training data actively collected by the scheme.
* denotes the next sampling point suggested by the active learning scheme.

P. Perdikaris, and G.E. Karniadakis, Inferring solutions of differential equations using noisy multi-fidelity data, http://128.84.21.199/abs/1607.04805, 20



http://128.84.21.199/abs/1607.04805

Nonlinear equations via probabilistic time-stepping

rEmmgfe: 1D viscous Burgers —> The equation, along with the choice of a time-stepping scheme define a GP prior! :
i O & u
B uﬁ—vﬁ, re[-1,1], te][0,1], 1 1 dun+(2) d?u“-l-l{g;}
u(0, z) = u’(z) + L™ (z):=u" () + At u"(x) T At v T "(z)
J-'f{t: 0) = u(t,1) = 0. e.q., Backward Euler time-stepping y
Let us start by making the assumption that Time: 0000000

20 pralning polnts

1.5

.ul]'!-+1_.n+1{;r] . g—’]}( kﬂ--l-l n+1 {I .I.' H]]

Consequently,
u(z) ~ GP(0, k™" (z, 2"; 0)),

with the fundamental relationships

wfx]

M (x, 2" 0) = LoLok™ T (2 2" 0),

L (g, 2 0) = Lok (2, 2 ). 15
=1 0.5 i) 0.5 1

We can now train the hyper-parameters # using the data {z", u"}, {ﬂJIH_l ”“H} and by
minimizing the negative log marginal likelihood obtamed from

[ uE‘H } N_N'(D._ { fﬂ““*““[m?“,m?’“] kn+1,n{$?+1:‘mﬂ] }) |

um kn,ﬂ+1[mnfmg+ } kﬂ,ﬂ{;ﬂﬂ! .llﬂ}

n+1 n+1

Here, {x", u"} are artificially generated data and {x, } are data on the boundary.

Remark: Since {=™, u" } are artificially generated data, in order to consistently propagate
uncertainty in time we need to marginalize out 1.
M. Raissi,., P Perdikaris, and G.E. Karniadakis.. Probabilistic time-stepping and uncertainty propagation for partial differential equations. (in preparation)



Scalability, non-stationarity & high dimensions

Scalability: GPs suffer from a cubic scaling with the data

Low-rank approximations to the covariance
Snelson, E., and Z. Ghahramani. "Sparse Gaussian processes using pseudo-inputs.”

Frequency-domain learning algorithms
\/ Perdikaris P, D. Venturi, 6.E. Karniadakis "Multi-fidefity information fusion algorithms for high dimensional systems and massive data-sets; SIAM J. 5ci. Comput., 2016

Stochastic variational inference
v/ Hensman, [, N. Fusi, and N.D. Lawrence. "Gaussian processes for big data.”

Discontinuities and non-stationarity: GPs struggle with discontinuous data f1 fo

\/ Use warping functions to transform into a jointly stationary input space ®—'®—‘®

Log, sigmoid, betaCDF —> “Warped GPs"  Snelson, E, CE. Rasmussen, and Z.Ghahramani. "Warped gaussian processes.”
Neural networks —> “Manifold GPs"  Calandra, R., et al. "Manifold Gaussian processes for regression."
Gaussian processes — > "Deep GPs" Damianou, A. C, and N.D. Lawrence. "Deep Gaussian processes.”

High-dimensions: Tensor product kernels suffer from the curse of dimensionality, i.e. the require an
exponentially increasing amount of training data

,/ Data-driven additive kernels
Perdikaris B, [ Venturi, G.E. Karniadakis “Multi-fidelity information fusion algorithms for high dimensional systems and massive data-sets, SIAM 1. 5. Comput,, 2076

V" Unsupervised dimensionality-reduction (GPLVM, deep auto-encoders)

Lawrence, N.D. "Gaussian process latent variable models for visualisation of high dimensional data.”



Summary & Future vision

Hierarchical models &
compositionality

Data-efficient learning &
uncertainty quantification

Structured representations &
nonlinear dimensionality

reduction
Statistical

Learning

Multi-fidelity & stochastic
modeling

Experimental data
& expert opinion

High-order : . .
methods | Engineering Applications

& fast solvers

Policy & decision

Concurrent coupling eriziing

of multi-physics solvers



